Printed CPW-Fed Wideband Rhombus Slot Antenna for WiMAX applications

نویسندگان

  • Jen-Yea Jan
  • Chia-Hung Wang
چکیده

In recent years, wireless communications have progressed very rapidly. In order to provide with large bandwidth for any wireless application, wideband antenna design has become very important. In the reported literature [1-2], some of CPW-fed and microstrip-line-fed wide-slot antennas have been proposed for the wideband operation. The impedance bandwidths of the wide-slot designs [1-2] can reach about 15~88%. However, they are still not enough for wireless applications. For other reports in [3-5], some of slot antennas for WiMAX applications are proposed. However, the wideband technique used in these designs makes the antenna design more complicated. In this paper, a CPW-fed rhombus slot antenna is proposed for WiMAX applications. Good impedance matching for a wideband operation can be obtained. Within this wide operating impedance bandwidth, the same polarization plane and broadside radiation patterns can be excited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved CPW-Fed Printed UWB Antenna With Controllable Band-notched Functions

A newly designed printed slot antenna is presented that incorporates variable two band-notched functions for ultra-wideband (UWB) applications. The two band notches of this coplanar waveguide (CPW) fed antenna are achieved by an M-shaped slot (MSS) embedded in the radiating element and a C-shaped strip (CSS) close to ground plane, therefore two very narrow rejected properties in the wireless lo...

متن کامل

CPW-Fed Circularly Polarized Slot ANTENNA with Elliptical-Shaped Patch for UWB Applications

A new design of coplanar waveguide (CPW)-fed antenna with circular polarization (CP) and excellent impedance matching is presented. In this design a pair of circular-shaped slits is applied to opposite corners of the slot for enhancing the impedance matching and realizes bandwidth of 134.43% across 2.98-15.20 GHz for VSWR≤2. Furthermore this structure exhibits axial ration bandwidth (ARBW) of 3...

متن کامل

New Low Cost Printed Antenna CPW-Fed for Global Positioning System, Personal Communication System and Worldwide Interoperability for Microwave Access Band Applications (TECHNICAL NOTE)

This paper presents a new design of a CPW-Fed multi bands planar antenna. This antenna can be integrated easily with passive and active elements. The proposed antenna is suitable to operate for GPS, PCS and WiMAX bands. Its entire area is 52.3x52.6mm2 and is employed on an FR-4 epoxy substrate and fed by a 50 Ohm coplanar line. The antenna parameters have been analyzed and optimized by using AD...

متن کامل

Multiband Slot Loaded Uniplanar CPW-fed Monopole Antenna with Asymmetrical Arms

This paper presents a new approach for the design of a multiband uniplanar CPW-fed monopole antenna. The antenna consists of a fork like monopole strip to which is added an inverted U-shaped strip. The three branch fork like strip can create three resonant bands within the WLAN range while the placement of the inverted U-shaped strip provides a better impedance matching for the lowest resonant ...

متن کامل

Design of A Compact CPW-FED UWB Antenna with WiMAX and WLAN Band-Notched Characteristic Evaluated in AHP Framework

In this article, we present a new design of a coplanar waveguide fed (CPW-fed) ultra-wideband (UWB) antenna with dual band-notched characteristics. Two notched frequency bands are achieved by using two inverted U-shaped stepped impedance resonators. The proposed antenna can operate from 2.82 to 11 GHz (118%), defined by VSWR< 2, except two notched bands around 3.5 GHz (WiMAX) and 5.5 GHz (WLAN)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008